A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusion-reaction equation

نویسندگان

چکیده

This paper considers a deep analysis of three-level explicit time-split MacCormack method, namely the locally one-dimensional for numerical solution two-dimensional nonlinear evolutionary advection-diffusion equation subjects to suitable initial and boundary conditions. The splitting reduces computational cost algorithm. Under time-step restriction, both theoretical results on stability error estimates scheme are deeply analyzed in \(L^{m}(0,T;L^{2})\)-norm (\(m=1,2,\infty\)). experiments suggest that proposed algorithm is easy implement, temporal second-order convergent fourth-order accurate space. shows utility efficiency considered method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Nonnormality Effects in a Discretised Nonlinear Reaction-Convection-Diffusion Equation

to diffusion, a convection term is present. Our overall aim is to look at the effect of convection on the existence and What is the long-time effect of adding convention to a discretised reaction-diffusion equation? For linear problems, it is well known stability of the true and spurious fixed points. that convection may denormalise the process, and, in particular, The potential denormalising e...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The journal of mathematics and computer science

سال: 2021

ISSN: ['2008-949X']

DOI: https://doi.org/10.22436/jmcs.026.03.03